Fluoride removal from aqueous solution by functionalized-polyacrylonitrile coated with iron oxide nano particles: characterization and sorption studies

نویسندگان

  • Jafar Nouri
  • Ramin Nabizadeh
  • Masoud Yunesian
  • Faramarz Moattar
  • Mahsa Jahangiri-rad
چکیده

Polyacrylonitrile (PAN)-oxime-nano Fe2O3 was used as an adsorbent for the removal of fluoride from water. The influences of contact time, initial fluoride concentration, and adsorbent dosage were investigated by batch equilibrium studies. The rate of adsorption was rapid with equilibrium being attained after 100min. The Langmuir isotherm model was found to represent the measured adsorption data well. The adsorption process followed the pseudo-first-order kinetic model. It was found that the adsorbed fluoride could be easily desorbed by replacing the adsorbent in deionized water. This indicates that the material could be easily recycled. The results from the present study show the potential of PAN-oxime-nano Fe2O3 for fluoride removal. Furthermore, the adsorption isotherms of Fluoride removal were examined and the possible desorption process was discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the Effects of Competing Anions on Fluoride Removal by Functionalized Polyacrylonitrile Coated with Iron Oxide Nanoparticles

Fe2O3 nano particles supported on functionalized poly-acrylonitrile was prepared. PAN-oxime-nano Fe2O3 was characterized by XRD, FTIR and TEM and used for fluoride adsorption. The adsorption capacity increased with increasing initial fluoride concentration and reaction time. Fluoride-removal performance of PAN-oxime-nano Fe2O3 was also tested in the presence of various competing anions usually ...

متن کامل

Removal of Fe2+ from Aqueous Solution Using Manganese Oxide Coated Zeolite and Iron Oxide Coated Zeolite

The adsorption of Fe2+ by the manganese oxide coated zeolite (MOCZ) and iron oxide coated zeolite (FOCZ) was studied. Surface properties of adsorbents have been investigated for monitoring their changes and morphology for both of the MOCZ and FOCZ. Main variables namely; contact time, pH, initial concentration of Fe2+, size and dosage of adsorbent have been optimized, and the results contrasted...

متن کامل

Defluoridation of Aqueous Solution by Graphene and Graphene Oxide Nanoparticles: Thermodynamic and Isotherm Studies

Fluoride, a non-essential element, can enter water resources through several natural processes and human activities. The benefits and risks of fluoride depend on the concentration of this anion on drinking waters. In the present study, the performances of graphene and graphene oxide nanoparticles were investigated for the removal of fluoride from aqueous solution. In the present resea...

متن کامل

Toxic metal removal from aqueous solution by advanced Carbon allotropes: a case study from the Sungun Copper Mine

The sorption efficiencies of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (f-MWCNTs) were investigated and elucidated to study their potential in treating acid mine drainage (AMD) containing Cu2+, Mn2+, Zn2+, Pb2+, Fe3+ and Cd2+ metal ions. Several layered GO nanosheets and f-MWCNTs were formed via the modified Hummers’ method and the acid treatment of the MWCNTs, respec...

متن کامل

Fluoride Ions Removal using Yttrium Alginate Biocomposite from an Aqueous Solution (RESEARCH NOTE)

Removal of fluoride ions was investigated using a new adsorbent of yttrium alginate biocomposite (YALG). Effect of various parameters such as pH, contact time, initial concentration of fluoride ions and temperature on the sorption capacity of adsorbent was studied. Performing a mathematical assessment of fluoride sorption, isotherm and kinetics models including Freundlich & Langmuir isotherms a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013